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Abstract

Relaxation dynamics in two-dimensional atomic clusters consisting of mono-atomic particles interacting through Len-
nard-Jones (L-J) potential has been investigated using Monte Carlo simulation. A modification of the conventional
Metropolis algorithm is proposed to introduce realistic thermal motion of the particles moving in the interacting L–J
potential field. The proposed algorithm leads to a quick equilibration from the nonequilibrium cluster configuration in
a certain temperature regime, where the relaxation time (s), measured in terms of Monte Carlo Steps (MCS) per particle,
vary inversely with the square root of system temperature (

p
T) and pressure (P); s / (P

p
T)�1. From this a realistic cor-

relation between MCS and time has been predicted.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The transformation of matter from nonequilibrium state to an equilibrium one depends strongly on the pre-
vailing external and internal physical conditions. Among the external conditions, most important are pressure
and temperature and internal condition refers to the interaction potential of the constituent atoms of the mate-
rial. The high temperature state of any matter is a completely disordered chaotic state, the gaseous state. When
such a system is allowed to cool down, keeping it in contact with a thermal bath maintained at lower temper-
ature, it normally goes to a solid phase either directly or through an intermediate liquid phase depending on
the external pressure. The structure of the final solid phase, whether it is an ordered crystalline or a disordered
amorphous or glassy state, depends primarily on the cooling procedure. The study of the dynamics of relax-
ation of such systems towards equilibrium, received much importance in recent years [1–4]. Complex systems
like glasses, peptides and proteins are found to exhibit different types of time evolution behaviours including
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exponential, multiexponential and asymptotic power-law relaxation [5–8]. Theoretical modeling of the phys-
ical phenomena include Adam-Gibbs (AG) model [9,10], time autocorrelation function analysis of master
equation [5], molecular dynamics (MD) simulation [11,12], and Monte Carlo simulation [13]. These studies
help in understanding some of the salient features of the relaxation dynamics in the glassy state at moderately
low temperature, the so-called a-relaxation regime, leaving a many of the basic questions unanswered. In the
low temperature a-relaxation regime, the most popular approach to study the phenomena involves analysis
using a master equation [14] considering potential energy landscape (PEL) [5, 15–21]. These studies are helpful
for qualitative understanding of the short-time and long-time relaxation processes. Molecular dynamics (MD)
simulation [11], unlike master equation approach, deals with the problem in the microscopic level, but takes
longer time to solve relevant equations of motions. A very recent MD simulation [12] in a super-cooled binary
liquid proposes the a relaxation to be a sequence of rapid localized co-operative relaxation event in which
small particle clusters participate. Monte Carlo simulation of similar systems at low temperature considering
spin-glass (SG) model offer considerable difficulty due to the fact that the spin configurations tend to be
trapped into any of the many local minima of the free energy function giving rise to slow dynamical process.
This points to the necessity for the development of an efficient MC method. The multicanonical method [22],
simulated tempering method [23] and exchange MC method (EMC) [13,24] take into account this particular
issue. In spite of these sincere efforts, the predictions of the SG models are yet to be settled from the exper-
imental point of view.

2. The model

Our present motivation is to investigate the relaxation dynamics using MC method. In contrast to the most
popular SG model, in which the system is modeled by spins occupying specific lattice sites and interact with
each other through a suitable Hamiltonian, we consider a more realistic model in which the constituent par-
ticles of the system are free to move and take any position in a two-dimensional space of constant area. The
particles are assumed to be mono-atomic and interact through Lennard-Jonnes (L-J) potential. The initial
configuration representing the disordered state at relatively high temperature is generated by placing the par-
ticles randomly in the two-dimensional space. The system temperature T is then suddenly reduced to a lower
value keeping it in contact with a thermal bath and the dynamics to equilibrium is achieved through MC
simulation. To introduce real thermal motion, we propose a modification of the conventional Metropolis
Fig. 1. The Lennard-Jones potential function V (normalised). rmin represents the distance at which the potential function becomes
minimum. The allowed range of particle displacement at temperature T measured in units of the normalised potential is dr and Dv is the
depth of the potential.
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algorithm [25]. In the standard Metropolis algorithm, equilibrium system configurations are generated
through a probabilistic calculation in which the change in potential energy of the constituent particles due
to arbitrary displacement within a pre-assigned range dr from its previous occupied position is compared with
the kinetic energy imparted through system temperature. We observe that the system dynamics depends very
much on the choice of dr. In real physical systems however, particle motions depend on the system tempera-
ture T. To incorporate this temperature dependence to our simulation procedure, the allowed range of dis-
placement dr is decided by the L–J potential function and the average kinetic energy possessed by the
particles at temperature T (measured in units of the normalised interaction potential V). This is depicted in
Fig. 1. The inter-atomic distances are measured in units of rmin, the distance at which the potential function
possesses the minimum value. With the introduction of such restricted Monte Carlo moves, we notice that the
system attains the equilibrium configuration within �103 Monte Carlo steps (MCS) per particle.

3. Results and discussion

We start with a disordered state generated by placing N point particles randomly in a two-dimensional
space of equal length L = 14. In calculating any physical parameter, we generate at least three independent
initial configurations and take average. The configuration generated with N particles corresponds to a particle
concentration (density) c = N/L2. To know the system configuration at any finite temperature T, the N par-
ticles are allowed to move through restricted Monte Carlo steps. After 50 moves per particle the root mean
square deviation d of the particles from their previous positions are calculated. We found that d decreases
sharply with the number of Monte Carlo steps S only when the system temperature remains within a certain
range depending on particle concentration c. Below c = 0.5 small clusters having ordered structures are
formed here and there and no long range order is found. For c P 0.5 the particles form a single cluster
and if T lies within a certain range T1 < T < T2, d decreases sharply with S and fluctuates around a steady
value deq. When T is outside the specified range as stated above, d fluctuates around a high value signifying
the maintenance of the initial disordered state. Fig. 2 depicts the nature of variation of d with S for c = 0.5
at T = 0.008, 0.02, 0.12 and 0.18. We see that at T = 0.008 both deq and its fluctuations are large. The quan-
tities show minimum value at T = 0.02 and starts increasing as T is increased. The d vs. S plot is fitted with an
exponential function given by,
Fig. 2. Variation of root mean square displacement drms (in units of rmin) with Monte Carlo steps S at T = 0.008, 0.02, 0.12 and 0.18.



Fig. 3.
phases
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d ¼ d0 þ a expð�S=sÞ ð1Þ

The parameter s gives the relaxation time in terms of Monte Carlo steps and d0 gives the average value of the
rms displacement deq at equilibrium configuration. In fact, there is no study relating Monte Carlo steps with
real physical time. We assume a linear relationship between the two to study the relaxation behaviour of our
system.

The variation of deq with T for c = 0.5 is presented in Fig. 3 which shows that deq decreases to a low value of
�0.6 � 10�3 unit (unit length corresponds to the value at which L-J potential has minimum value) at about
T1 = 0.02. It then starts increasing at a low rate up to T2 = 0.1. The rate of increase is found to be higher
and higher in the range from T2 = 0.1 to T3 = 0.16 and above T3, respectively. From the slopes of this curve
we identify the regions T1T2, T2T3 and above T3 to be solid, liquid and gas, respectively. Below T1 large values
of deq and its fluctuations (Fig. 2(a)) indicate that no stable configuration is reached by the system of particles.
In fact the state corresponding to this temperature regime is the glassy state for which the relaxation dynamics
is very slow. T1 may be identified with the glass transition temperature Tg. The nature of relaxation in this
regime is quite interesting and will be treated later. For the present let us restrict our study above T1. The equi-
librium particle configurations reached at different temperatures above T1 for c = 0.5 are depicted in Fig. 4.
Fig. 4(a) shows the initial configuration in which some of the particles are found to occupy positions suffi-
ciently close to each other. In fact, this represents an impractical situation and arises due to the fact that in
generating this configuration we placed particles completely randomly without considering the hard-core
repulsion imposed by the Lennard-Jones potential. However, the assumption of such an impractical initial
configuration affects the results of the present study little since during simulation, within a few Monte Carlo
steps (�5 MCS) the particles rearrange themselves to achieve a physically acceptable configuration. Our study
shows that in the region T1 < T < T2, the system relaxes to a steady state with an ordered hexagonal solid like
structure except a few defects. These defects arise as the system is quenched from a high temperature config-
uration. A typical particle configuration reached in this case is depicted in Fig. 4(b). This configuration
remains almost unchanged with MCS except a little movement of the peripheral particles. In the range
T2 < T < T3, deq as well as its fluctuations starts increasing. In this case, the system relaxes to a structure show-
ing local orders with considerable number of defects and the configuration changes continuously indicating
liquid like behaviour. Fig. 4(c) presents a snapshot of the particle configuration that is observed to change with
MCS. For T > T3, deq and its fluctuations increase further and no stable configuration is reached. The system
shows gas like behaviour. Fig. 4(d) shows a snapshot of the particle configuration in this region. This config-
Variation of deq (in units of rmin) with temperature (T) for c = 0.5. T1T2, T2T3 and above T3 represent the solid, liquid and gaseous
, respectively.



Fig. 4. The particle configurations at different temperatures (T). The initially generated random particle configuration corresponding to
high temperature state is presented in (a) and those obtained after S = 5000 at T = 0.02, 0.12 and 0.18 are presented in (b), (c) and (d),
respectively.
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uration changes continuously with MCS. The behaviour of deq and observed change in particle configuration
justifies the identification of the solid, liquid and gaseous states of the system. The equilibrium particle con-
figurations in the solid phases obtained at c = 0.7 and 0.9 show that the equilibrium structures become more
compact and rigid for higher values of c. According to Lindemann’s criteria solid starts melting when deq is
nearly 10% of the equilibrium spacing between the constituent atoms [26]. But the present simulation shows
that melting occurs when deq is nearly 0.2% of the average lattice spacing. This may be caused by the lower
dimensionality of the system considered.

Fig. 5 shows the variation of deq with temperature for two higher values of particle concentration, c = 0.7
and 0.9 along with that for c = 0.5. We observe that as c increases deq and its fluctuations decrease. In the
region T1 = 0.02 to T2 = 0.1, the nature of variation of deq with T is almost same for all the three concentra-
tions. Above T2 the two curves for c = 0.7 and 0.9 show lower and lower rate of increase. In fact solid–liquid
transition is expected to occur at higher and higher temperatures for these two concentrations respectively
because they correspond to the situation at higher and higher pressures and the liquid phase for them will con-
tinue to higher and higher temperatures.

A qualitative analysis of the relaxation mechanism can be obtained considering the depth of the L-J poten-
tial well and the kinetic energy of the constituent particles. It is quite reasonable to expect that to achieve an
ordered cluster configuration, the particles must possess a low kinetic energy compared to the depth of the
potential well (T < Dv) as indicated in Fig. 1, so that any of them have a chance to get trapped by the potential
minima while encountering another particle during their random thermal motion. The possibility of getting
trapped will increase with the decrease of particle velocity. Again, the probability that a particle will encounter
another one in a specified time interval increases with the increase of pressure. These two considerations led us
to conjecture s � (P

p
T)�1, if T lies above some critical value viz. T1, but not too large. For low temperature

T < T1, the particles will move slowly and take larger time to get trapped.



Fig. 5. Variation of deq (in units of rmin) with temperature (T) for c = 0.5, 0.7 and 0.9.
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Thus we expect that s vs. T plot will show a minimum. Fig. 6 presents the variation of s with T for c = 0.5,
0.7 and 0.9. For c = 0.5 the curve shows the existence of a reasonably sharp minimum, but as c is increased the
minimum becomes flat and for c = 0.9 s remains almost unchanged at its minimum value for higher T. The
observation of such a minimum in s vs. T plot is found to be consistent with the study involving master equa-
tion approach using potential energy landscape [27]. The s vs. T�1/2 plot for T > 0.04 fitted with straight-line
graph yield three different lines as presented in Fig. 7. It is interesting to note that, the three curves meet near
T = 0.05 indicating that at this temperature s is minimum and independent of pressure, of course, if P lies
above some critical value. The slopes m of these lines plotted against c show linear behaviour as depicted
in Fig. 8 confirming that s � (P

p
T)�1, since c � P�1.

One important consequence of the present simulation algorithm is that, it gives an estimate of MCS time in
terms of actual time. We observe that for all of the three concentrations deq attains a minimum value at
Fig. 6. Variation of relaxation time (s) in MCS with temperature (T) for c = 0.5, 0.7 and 0.9.



Fig. 7. Variation of relaxation time (s) in MCS with T�1/2 for c = 0.5, 0.7 and 0.9 for T > 0.04.

Fig. 8. Variation of slope (m) with particle concentration (c).
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T1 = 0.02. If the L-J potential is assumed to have a minimum of �1.0 eV at rmin = 1 nm then T1 corresponds
to 0.02 eV. At this temperature, particles with mass �10 amu will have an average velocity �0.4 � 105 cm/s
and maximum allowable particle displacement will be dmax ffi 1.26 nm. Thus the time step corresponding to
1 MCS will be �0.002 ns and the relaxation time s leading to ordered structure will be �0.1 ns. This time will
be larger for particles with larger mass, s � pm.

4. Conclusion

To conclude, it is to be emphasized that we have presented a MC simulation procedure considering an
improved algorithm taking into account the realistic thermal motion of the constituent particles. The impor-
tant outcome of the proposed algorithm is that, it leads to quicker equilibration process predicting a realistic
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correlation between Monte Carlo time steps and actual time. Secondly, the study offers a logical understand-
ing of the relaxation behaviour of a disordered gaseous system at a very high temperature when it is quenched
to a lower temperature T keeping it in contact with a thermal bath maintained at constant T. It is observed
that the system relaxes to a ordered stable configuration only when T < Dv as expected. No stable configura-
tion is achieved when T� Dv or T� Dv. For T� Dv, the system is expected to show much slower relaxation
phenomena as in glassy systems and this will be explored in future. In the temperature region T above T1, the
relaxation time s, assumed to be proportional to MC steps, is found to be inversely proportional to P

p
T.
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